

The importance of attitude markers (AM) and engagement markers (EM) use in academic discourse

Arkan Rahman Sayah

Article Info

Article

History

Received:

1 July 2025

Accepted:

1 December
2025

Keywords

Attitude and engagement markers, academic spoken English, Michigan Corpus of Academic Spoken English(MICASE)

Abstract

Motivated by the concept of attitude and engagement markers as rhetoric features of academic discourse, the present study aimed to examine the use of these markers in the Michigan Corpus of Academic Spoken English (MICASE). It intended to see whether native and non-native speakers of English differed in attitude and engagement markers' use across academic divisions, levels of interactivity, genders, and academic roles in academic spoken English. The corpus, investigated through the list of attitude and engagement markers suggested by Hyland (2005), totally consisted of four academic divisions, five levels of interactivity, and both male and female speakers in four academic roles. The results of the inferential statistic of UNIANOVA revealed that not only did native speakers of English utilize attitude and engagement markers more than non-native ones across the four variables, but also they made academic division, levels of interactivity, genders, and academic roles-specific use of these markers. In other words, the findings indicated that their use in academic spoken English was not only conditioned by the discipline or academic divisions but also by levels of interactivity, genders, and academic roles. Besides the influence of culture and proficiency on attitude and engagement markers use, this corpus analysis study found that native English speakers designate evaluation and share it with the immediate audience and direct them to interpretations in soft sciences more than the hard ones. It also indicated native speakers' greater attempt to compare/ contrast and admire/ criticize the presented viewpoints to win the argument and to address/ instruct listeners to do an action or not in highly interactive levels. Furthermore, it was shown that female native speakers exceeded to indicate their higher expression of assessment, significance, and position on certain issues to listeners and engage their listeners in the discourse and anticipate their concerns in academic spoken English of the MICASE. Ultimately, it illustrated that native academic speakers of English of faculty role surpassed in higher expression of their evaluation and relation-building with their listeners to ensure they are attending. Pedagogically, it was suggested that English teachers should make students aware of these rhetorical features to help them place themselves within the norms of the discourse community in academic spoken English.

Introduction

The current research investigates the utilization of AMs and EMs in a corpus of academic spoken English from the Michigan Corpus of Academic Spoken English (MICASE). In recent times, there has been a growing interest in exploring the assessment of attitudes and the presence of the audience in academic writing. This goes beyond merely presenting factual information to considering how language is used to create interpersonal connections.

Academic writers and speakers don't just convey information; they also aim to present a reliable picture of themselves and their research while they are acknowledging and negotiating social relations with the audience. According to Hyland (2004), successful academic communication involves controlling the degree of personal involvement in texts, showing harmony with readers, assessing their material, and replying on others' views.

The metadiscursive resources, like AMs and EMs, are crucial tools for guiding the audience's understanding of the text and shaping the relationship between the writer/speaker and the audience. Attitude markers help to explicitly convey emotions, attitudes, evaluations, and feelings about the discussion in the text. Engagement markers, on the other hand, help writers involve their audience and aid their interpretation.

The study aims to explore how English native and non-native speakers employ these metadiscourse elements in academic communication across various academic divisions, levels of interactivity, genders, and academic roles. Analyzing the differences in attitude expression and audience engagement among language users will provide insights into how these markers are used in different ways.

To sum up, this study seeks to understand how AMs and EMs are utilized by academic writers and speakers to enhance their communication with the audience and establish a strong interpersonal connection in academic discourse. Understanding these interactional resources can offer valuable insights into effective academic communication across different contexts and language backgrounds.

Statement of the Problem

This research designed to quantitatively examine the use of AMs and EMs, which are two interactional metadiscourse resources, in academic spoken English. The study compared two groups of English speakers, explored various academic divisions, and analyzed different types of classroom speech events. Metadiscourse, according to Hyland (2005), denotes expressions which refer to the process of

introspection and examination of one's thoughts, feelings, and actions. It involves looking inward to gain a deeper understanding of oneself, one's beliefs, values, strengths, weaknesses, and motivations. They are employed to convey interactional meanings in a text, helping to organize and present the content coherently and convincingly.

The research focuses on the comprehensive analysis of AMs and EMs as aspects of metadiscourse. Attitude markers are expressions of emotions and attitudes towards claims and findings, and surprisingly, there has been little investigation into their use in academic spoken English. EMs, on the other hand, demonstrate the writers' acknowledgment of their audience, aiming to involve them, capture their attention, and treat them as active participants in the discourse. While previous studies have explored EMs in written academic texts, their use in academic spoken English has been largely neglected. The study primarily examines the MICASE corpus, which contains a wide range of academic speech events recorded in-depth, covering not only scholarly discussions but also other speech acts like jokes, confessions, and personal anecdotes.

The research sought to identify differences in the utilization of AMs and EMs between native English American and non-native speakers from various language backgrounds. Additionally, it analyzed the use of these markers across four academic divisions: biomedical and health science, arts and humanities, physical sciences and engineering, and social sciences and education. Moreover, this research explored the role of gender in influencing speakers' relationships with their audience through the use of attitude and EMs. Few studies have delved into this aspect, making it an essential focus of this research. Furthermore, the study investigated how different academic roles, such as faculties, graduates, undergraduates, and others, utilized these metadiscourse markers.

Previous research has not extensively examined the analysis of AMs and EMs in relation to academic roles. In conclusion, this study emphasizes the significance of understanding AMs and EMs to comprehend the speakers' attitude, evaluation, and authorial voice in academic opinions and how they recognize their audience presence. Through a thorough exploration of these metadiscursive aspects in academic spoken English, the research aims to contribute to a deeper understanding of effective academic communication.

Objectives of the Study

The main objective of this research is to quantitatively investigate the use of AMs and EMs in academic spoken English. The study focuses on the interpersonal aspects of metadiscourse, which reveal the writer's emotional attitude towards propositions and how they address readers to engage them or capture

their attention. The motivation for this study arises from the lack of corpus-based research on academic spoken English, particularly utilizing the MICASE corpus.

Additionally, the research explores the application of AMs and EMs across various academic divisions, such as biomedical and health science, arts and humanities, physical sciences and engineering, and social sciences and education, which are prominent in the MICASE corpus. The aim is to understand how native and non-native speakers use these markers in different genres and academic contexts.

Furthermore, the study seeks to examine whether there are distinctions in the use of AMs and EMs among different levels of interactivity or discourse modes, including highly interactive, mostly interactive, highly monologic, mostly monologic, and mixed. It aims to identify potential differences in the utilization of these metadiscourse features between native and non-native corpora.

Moreover, this research contributes to the existing literature on AMs and EMs by analyzing their use among native and non-native speakers, considering gender and academic roles. The corpus analysis will be conducted using the Michigan Corpus of Academic Spoken English from the English Language Institute at the University of Michigan. By exploring these aspects, the study aims to enhance our understanding of how AMs and EMs are employed in academic spoken English.

Research Questions

In this paper, an attempt is made to answer the following questions.

1. Do the native and non-native speakers of English differ from each other in attitude and engagement markers' use across academic divisions in academic spoken English? if yes, how?
2. Do the native and non-native speakers of English differ from each other in attitude and engagement markers' use across levels of interactivity in academic spoken English? if yes, how?
3. Do the native and non-native speakers of English differ from each other in attitude and engagement markers' use across genders in academic spoken English? if yes, how?
4. Do the native and non-native speakers of English differ from each other in attitude and engagement markers' use across academic roles in academic spoken English? if yes, how?

Research Hypotheses

1. Native and non-native speakers of English do not differ from each other in attitude and engagement markers' use across academic divisions in academic spoken English.
2. Native and non-native speakers of English do not differ from each other in attitude and engagement markers' use across levels of interactivity in academic spoken English.

3. Native and non-native speakers of English do not differ from each other in attitude and engagement markers' use across genders in academic spoken English.

4. Native and non-native speakers of English do not differ from each other in attitude and engagement markers' use across academic roles in academic spoken English.

Significance of the Study

This study aims to quantitatively explore the use of AMs and EMs in academic spoken English, a field that has received little attention despite extensive research on metadiscourse features. The research uniquely focuses on academic spoken English and utilizes the Michigan Corpus of Academic Spoken English as a reliable but under-researched source.

Additionally, this study contributes to our understanding of English for Academic purposes by comparing four academic divisions: biomedical and health science, arts and humanities, physical sciences and engineering, and social sciences and education. Surprisingly, no research has been conducted on these divisions, according to the researcher's knowledge.

Another innovative aspect of this survey is its examination of discourse modes or levels of interactivity, genders, and academic roles in the use of attitude and EMs. The study aims to investigate potential differences among these variables through the analysis of attitude and EMs.

To explore this, the study analyzes the MICASE corpus, which provides academic spoken English data, including various speech events ranging in duration and word count.

The research investigates both attitude markers, such as "unfortunately" and "I agree," and EMs like "consider" and "note" in academic spoken English. The corpus covers diverse

Literature Review

The Theoretical Background

In recent times, there has been a growing focus in academic literature on studying AMs and EMs of interactional metadiscourse resources. Swales (1990) identified four characteristics of a discourse community: 1) shared public goals, 2) communication methods among members, 3) various genres used for communication, and 4) a specific level of expertise among members. An example of a discourse community is the one that utilizes different types of text for communication, requiring its members to become proficient in these genres to effectively communicate their contributions.

AM and EMs are two types of interactional metadiscourse indicators. The concept of metadiscourse was derived from Malinowski's work in 1927, highlighting language's role in creating bonds between speakers beyond just conveying thoughts. Zeillig Harries (1959) introduced the term

"metadiscourse," while its purpose and definition were further explained by Crismore (1989), Vande Kopple (1985), and Williams (1980). Metadiscourse aims to guide readers and establish connections, interpretations, and evaluations of the material.

Hyland (2005a) categorized metadiscourse markers into two main types: textual and interpersonal. Textual markers include endophoric markers, frame markers, logical connectives, code glosses, and evidentials, while interpersonal markers help convey the writers' attitudes and perceptions towards the text's content. Hyland (1998) identified five sub-classes of interpersonal markers, including emphatics, hedges, person markers, relational markers, and attitude markers.

Hyland (2005a) emphasized the significance of attitude markers, which play a crucial role in argumentative and evaluation-rich texts. These markers allow authors to express their evaluations, feelings, and attitudes regarding the discussed content. They engage the audience by sharing the author's views and seeking their agreement. EMs, instead, aid writers actively engage their readers in the text. They guide readers' interpretations, hold their attention, and motivate them to consider certain perspectives. Hyland (2005a) explained that EMs create a sense of alignment with the readers, incorporating them as discourse participants and directing their understanding.

The combined concept of Stance and Engagement, introduced by Hyland (2005b), encompasses both attitude and EMs. Stance focuses on the writer's interactional structures, such as their commitment to claims, expression of attitude, and self-mentions. This concept includes the elements presented in Table 2.1.

Table 2.1.

Stance Features of Hyland (2005b)

<ul style="list-style-type: none">• Hedges are used to indicate writers' decisions to withhold complete commitment to a proposition for example <i>might, perhaps, possible</i>.
<ul style="list-style-type: none">• Boosters are employed by the writers to express certainty and emphasize the force of propositions for example <i>in fact, definitely</i>.
<ul style="list-style-type: none">• Attitude markers indicate the writers' affective and emotional, rather than epistemic, attitude to suggested propositions, conveying surprise, obligation, agreement, importance, and so on for example <i>unfortunately, I agree, surprisingly</i>.
<ul style="list-style-type: none">• Self-mentions signal authors' explicit presence in the text for example <i>I, we, our, my</i>.

According to Hyland (2005b), in academic writing, engagement pertains to the reader-oriented aspects of interaction. Writers use various rhetorical techniques to engage potential readers, capture their interest, predict potential objections, and direct them towards a specific understanding or viewpoint in the text. In terms of classifying EMs, Hyland (2005, p.182) presented the taxonomy provided in Table 2.2.

Table 2.2.*Taxonomy of Engagement Markers of Hyland (2005b)*

1. Pronouns: The pronouns “you” or “we” directly engage the reader in the discourse. Pronouns are used to anticipate readers’ concerns, expectations, or objections.
2. Personal asides: These can be seen as a reader-oriented strategy because they represent short ‘dialogues’ between the writer and the reader. Their main aim is to establish a relationship between them.
3. Appeals to shared knowledge: These function as a means for making the reader recognize something as familiar. Writers usually emphasize that what they say is true by using these strategies of appeals to shared knowledge.
4. Directives: They usually appear in the imperative mood to make readers do what the writer wants: normally to perform certain cognitive acts.
5. Questions: They are used to involve the reader in a dialogue with the writer. Writers can arouse their readers’ interest with rhetorical questions.

According to Hyland (2000), AMs indicate the writer's emotional, rather than factual, stance towards textual information, expressing emotions such as surprise, importance, obligation, agreement, and more. Writers convey their attitude in discourse through various means, such as subordination, comparatives, progressive particles, punctuation, attitude verbs, sentence adverbs, and adjectives. This approach allows writers to assert their firm positions while also influencing readers to agree, making it challenging to question these perspectives.

These features have been examined within different frameworks, including attitude (Dueñas, 2010; Koutsantoni, 2004), evaluation (Hunston & Thompson, 2000), stance (Biber, 2006), and appraisal. Researchers have categorized AMs in various ways. For instance, Abdollahzadeh (2011) identified verbal, adverbial, and adjectival markers, while Dafouz-Milne (2008) included subgroups like deontic verbs, attitudinal adverbs, attitudinal adjectives, and cognitive verbs. However, many scholars did not establish a specific classification for attitudinal devices. The AMs were classified based on their syntactic characteristics, as shown in Table 2.3.

Table 2.3.*Classification of Attitude Markers Based on Syntactic Characteristics*

Adjectives: important, consistent, critical, interesting, difficult, key, significant, necessary, valuable, major, best, better, effective, main, useful, easier, problematic, relevant, surprising, good, confident, desirable, great, serious, tremendous, worthwhile, acceptable, central, core, hard, inconsistent, influential, new, notable, underdeveloped, valid, adequate, crucial, dangerous, essential, fundamental, narrow, obvious, poor, satisfactory, sufficient, unexplored, unfortunate, wise.
Verbs: support, extend, contribute, expand, fail, deserve, ensure, ignore, neglect, broaden, lack.
Nouns: support, importance, lack, contribution, complexity, value, consistency, significance, validity, absence, credibility, dilemma, failure, key, strength, problem, limitation.
Adverbs: only, surprisingly, importantly, interestingly, unfortunately, reliably, critically, conclusively, broadly.
Modal verbs expressing obligation: must, have to, should

Methodology

Research Design

It was necessary to follow a corpus-based analysis which was both threefold and quantitative to examine the use of AMs and EMs across two types of speakers, four academic divisions, and various classroom events in the Michigan Corpus of Academic Spoken English (MICASE). That is, this study was intended to gain its purposes:

- a) explaining the distinctive features of AMs and EMs that characterize the academic spoken English of native and non-native speakers of English across four academic divisions;
- b) investigating the distinctive features of AMs and EMs that characterize the academic spoken English of native and non-native speakers of English across levels of interactivity;
- c) the distinctive features of AMs and EMs that characterize the academic spoken English of native and non-native speakers of English across different genders;
- d) the distinctive features of AMs and EMs that characterize the academic spoken English of native and non-native speakers of English across academic roles;

through collecting numerical data that were analyzed using mathematically-based methods (in particular statistics) and quantified by counting and scaling in the MICASE corpus.

In addition, the variables under investigation, attitude and EM, were identified and measured in the MICASE corpus to satisfy the distinctive features of quantitative research.

This research assigned the variables a logical scale of values and expressed them in terms of numbers in top-down decision-making. It initiated its work with precise coding tables for processing the data and utilized an elaborate set of statistical analytical tools to add systematicity and objectivity to the data analysis phase rather than rely on the researcher's subjective interpretations.

This research was intended to offer a structured and highly regulated way of data analysis to achieve a macro-perspective of the academic spoken English in AMs and EMs analysis. A priori taxonomy (Table 3.1) has already been specified to make exactly sure that they were determined based on the same understanding in the corpus.

The worldview underlying this research was realist or positivist because what the research did was to uncover an existing reality, which was the existence of AMs and EMs in academic spoken English. It was out there and it was the job of the researcher to use objective research methods to uncover its components in the MICASE corpus. This means that the researcher needed to be as detached from the research as possible and use methods that maximized objectivity and minimize the involvement of the researcher's interference in the research.

This study was also descriptive because the researcher intended to describe the presence of AMs and EMs in a corpus of academic spoken English. The data emerged here from the bottom up and it was intended to explore these phenomena by simply observing, measuring, and describing.

Materials (Corpus Justification)

This study analyzed the corpora of academic spoken English in its attitude and EM' frequency based on Hyland's (2004a) classification of metadiscourse features. His taxonomy of these features is demonstrated in Table 3.1 of which only two features, attitude and EM, were considered in this survey.

Table 3.1

Taxonomy of Metadiscourse Features (Hyland, 2004a, 2005)

Category	Function	Examples
Interactive	Help to guide the reader through the text	
Transitions	express relations between main clauses	in addition; but; thus; and
Frame markers	refer to discourse acts, sequences, or stages	finally; to conclude; my purpose is
Endophoric markers	refer to information in other parts of the text	noted above; see Fig; in section 2
Evidential	refer to information from other texts	according to X; Z states
Code glosses	elaborate prepositional meanings	namely; e.g., such as; in other words
Interactional	Involve the reader in the text	
Hedges	withhold commitment and open dialogue	might; perhaps; possible; about
Boosters	emphasize certainty or close dialogue	in fact; definitely; it is clear that
Attitude markers	express the writer's attitude to the proposition	unfortunately; I agree; surprisingly
Self-mentions	explicit reference to author(s)	I; we; my; me; our
Engagement markers	explicitly build a relationship with the reader	consider; note; you can see that

In Hyland's (2005a) perspective, Authorial Markers (AMs) are indicative of the writer's emotional attitude towards propositions, rather than their epistemic stance. These markers express various emotions such as surprise, agreement, importance, obligation, frustration, and others. The writer typically signals these AMs metadiscursively using attitude verbs (e.g., agree, prefer), sentence adverbs (e.g., unfortunately, hopefully), and adjectives (e.g., appropriate, logical, remarkable). The study investigated a comprehensive list of these markers, which can be found in Table 3.2.

Table 3.2

List of Attitude Markers Investigated in the MICASE

Admittedly, I agree, amazingly, appropriately, correctly, curiously, disappointing, disagree, even, fortunately, have to, hopefully, important, importantly, interest, interestingly, prefer, pleased, must, ought, prefer, remarkable, surprisingly, unfortunate, unfortunately, unusually, understandably

He also defined EMs as devices that obviously address readers, either to focus their attention or include them as discourse participants. A list of these markers considered in this study is indicated in

Table 3.

Table 3.3

List of Engagement Markers Investigated in the MICASE

Incidentally, by the way, let us, let's, ours, our, us, we, you, your, one's

In this study, AMs and EMs analysis is performed on native and non-native speaker speeches presented by the MICASE corpus. The native speakers examined in this study are native Americans, and non-native speakers have backgrounds in different languages. Table 3.4 shows the language status of two speakers' groups, the number of speakers, and the word count of the MICASE corpus.

Table 3.4

Speaker and Word Counts by Speaker Categories in the MICASE

	Speaker category	Total Speakers	Total Words	% of total corpus
Language	Native Speakers	1,449	1,493,586	88%
Status	Non-native speakers	122	201,954	12%

However, the first language of non-native speakers in the MICASE Corpus is alphabetically shown in Table 3.5. That is, the non-native speakers' corpora came from speakers of a range of different mother languages.

Table 3.5

The List of the First Languages of Non-Natives Speakers in the MICASE

Arabic, Armenian, Cantonese, Czech, Dutch, Estonian, Farsi, French, German, Gujarati, Hebrew, Hindi, Hungarian, Ibo, Indonesian, Italian, Japanese, Kannada, Korean, Macedonian, Mandarin, Marathi, Polish, Portuguese, Russian, South African English, Slovak, Spanish, Swahili, Swedish, Tagalog, Telugu, Thai, Turkish, British English, Ukrainian, Urdu, Ukrainian, Unknown

Table 3.6 indicates the corpora of each academic division, *biomedical and health science, arts and humanities, physical sciences and engineering, and social sciences and education*, available in the MICASE corpus and analyzed in this research.

Table 3.6*Speaker and Word Counts by Academic Division in the MICASE*

Academic Division	Speech Events	Speakers	Words	% of Total Corpus	% Male	% Female	% Faculty*	% Students*
Humanities & Arts	36	349	434,669	26	56	44	63	29
Social Sciences & Education	35	452	420,347	25	37	63	44	55
Biological & Health Sciences	32	257	325,456	19	41	59	55	42
Physical Sciences & Engineering	36	314	358,776	21	55	45	44	52

Table 3.7 indicates different levels of interactivity or discourse modes in the MICASE corpus. This study investigated these features including *highly interactive*, *mostly interactive*, *highly monologic*, *mostly monologic*, and *mixed* modes across four academic divisions, *biomedical and health science*, *arts and humanities*, *physical sciences and engineering*, and *social sciences and education* in making use of AMs and EMs by both native and non-native speakers.

Table 3.7*Speaker and Word Counts by Primary Discourse Mode in the MICASE*

Primary Discourse Mode	Speech Events	Speakers	Words	% of Total Corpus	% Male	% Female	% Faculty*	% Students*
Monologic	61	472	554,335	33	50	50	84	14
Panel	9	133	141,505	8	27	73	16	76
Interactive	57	643	715,333	42	46	54	26	63
Mixed	25	323	284,367	17	51	49	54	39
Totals	152	1,571	1,695,540					

Table 3.8 indicates the number of female and male speakers and their total words engaged in the MICASE.

Table 3.8*Speaker and Word Counts by Speaker Categories*

Speaker Category	Total Speakers	Total Words	% of Total Corpus
Gender	Male	729	46%
	Female	842	54%

Table

3.9 shows the statistics of each of the academic roles available in the MICASE.

Table 3.9*The Academic Role of the People in the MICASE*

Academic Role	Faculty	Student	
		Undergraduates	Graduate
Total Speakers	160	782	257
Total Words	825,829	368,433	373,915
% of Total Corpus	49%	22%	22%

Instruments

The MICASE corpus and Text Inspector were the two instruments used in this research introduced as follows.

The MICASE corpus

The Michigan Corpus of Academic Spoken English (MICASE) was prepared by Simpson et al. (2002) and is readily available without any restrictions at <https://quod.lib.umich.edu/cgi/c/corpus/corpus?c=micase;page=mbrowse>. It contains transcriptions of almost 1.7 million words of academic spoken English, totaling 200 hours of recordings.

The creators of this valuable database aimed to track general changes in speech patterns as individuals gain experience in university culture. While we have extensive knowledge about how academic writing develops as students progress, our understanding of changes in spoken language within academic cultures remains limited. MICASE specifically focused on the prevalent speech patterns within the University of Michigan in Ann Arbor. The corpus includes speakers from various roles, such as faculty, staff, and students at all academic levels. Native, near-native, and non-native speakers are also represented in the corpus, as shown in Table 3.4 and Table 3.5. The creators hope that this rich resource will aid in the development of more effective materials for teaching and testing English as a Second Language (ESL) and English for Academic Purposes (EAP) and will help explore the integration of corpus-based approaches into EAP programs.

Data Collection Method

This study was based on the data provided by the MICASE corpus. To answer the research questions, this corpus was initially searched for the all of the AMs and EMs in the speech of native speakers (Appendix A). After that, the MICASE was searched for the all of the AMs and EMs in the speech of the non-native speakers (Appendix B). That is, each of the AMs and EMs were separately searched for in the native speaker's corpus of the *biomedical and health science, arts and humanities, physical sciences and engineering, and social sciences and education* (Table 3.6) and its data was transferred to SPSS. Then, the non-native speakers' corpus of each academic division was searched for each of these markers.

To answer the next research question, the all of the AMs and EMs were separately searched for in all discourse modes including *highly interactive, mostly interactive, highly monologic, mostly monologic*, and *mixed* in the native and nonnative corpora of the MICASE (Table 3.7).

To answer the third research question, each of the AMs and EMs was separately searched across genders in the native and nonnative corpora of the MICASE (Table 3.8).

To answer the last research question, each of the AMs and EMs was separately searched across academic roles faculties, graduates, undergraduate, and others in the native and nonnative corpora of the MICASE (Table 3.9).

Procedures

This study was based on the data provided by the MICASE corpus. To the research questions, this corpus was initially searched for the first AMs and EMs in the speech of native speakers. The provided data was transferred to SPSS software to bear statistical measures for comparison. Then, this corpus was searched for the second AMs and EMs in the speech of native speakers. It was also searched for other attitude (Table A1) and engagement (Table C.1) markers one by one. The data provided for each of these markers was separately transferred to SPSS software to bear statistical measures for comparison.

After that, this corpus was searched for the first attitude (Table B.1) and EMs (Table D.1) in the speech of the non-native speakers. The provided data was transferred to SPSS software to bear statistical measures for comparison. Then, this corpus was searched for the second AMs and EMs in the speech of non-native speakers. It is also searched for the other AMs and EMs one by one. The data provided for each of these markers was separately transferred to SPSS software to bear statistical measures for comparison.

To answer the first research question, each of the AMs and EMs were separately searched for in the native speaker's corpus of the *biomedical and health science, arts and humanities, physical sciences and engineering, and social sciences and education* and its data was transferred to SPSS. Then, the non-native speakers' corpus of each academic division was searched for each of the attitude and EM, then its data was transferred to SPSS for statistical comparisons.

To answer the next research question, each of the AMs and EMs was separately searched for in all discourse modes including *highly interactive, mostly interactive, highly monologic, mostly monologic*, and *mixed* in the native and nonnative corpora, then its data was transferred to SPSS to bear statistical measures.

To answer the third research question, each of the AMs and EMs was separately searched in the

female and male speech in the native and nonnative corpora, then its data was transferred to SPSS to bear statistical measures.

To answer the last research question, each of the attitude and engagement marker was separately searched in faculties, graduates, undergraduates, and other's speech in the native and nonnative corpora, then its data was transferred to SPSS to bear statistical measures.

Data Analysis

This study needed the extraction of the frequency counts provided by MICASE into SPSS software for the use of AMs and EMs by native (Appendix A and C) and non-native speakers (Appendix B and D), across academic divisions, and levels of interactivity, genders and academic roles. Because the word counts were not equal in each of the corpora, these frequency counts reported by every 1000 words. Then, frequency, mean, and standard deviation were computed. To indicate the degree of significance or non-significance of these differences between the two groups of speakers across these academic divisions levels of interactivity, genders, and academic roles, this study used the inferential test UNIANOVA. This measure provided us with any probable differences between the two groups of speakers across the academic divisions, and levels of interactivity, genders, and academic roles in AMs and EMs utilization.

4. Results

4.1. Do the native and non-native speakers of English differ from each other in attitude and engagement markers' use across academic divisions in academic spoken English? if yes, how?

To investigate the differences between native and non-native speakers' use of AMs and EMs across four academic divisions in academic spoken English, this study computed the commands of descriptive statistics for 23 AM. They included mean and standard deviation represented in Table 4.1.

Table 4.1

The Descriptive Statistics of Native Speakers and Non-Native Speakers' use of Attitude Markers Across Academic Divisions in the MICASE

Academic Divisions	Language status	Mean	Std. Deviation	N
Biological and Health Sciences	Native speakers	23.0000	56.38262	23
	Non-native speakers	1.8696	5.40458	23
	Total	12.4348	41.01905	46
Humanities and arts	Native speakers	31.2174	96.41810	23
	Non-native speakers	1.3478	3.60061	23
	Total	16.2826	69.13229	46
Physical Sciences and Engineering	Native speakers	17.3478	49.28176	23
	Non-native speakers	1.3043	4.48670	23
	Total	9.3261	35.53843	46
Social Sciences and Education	Native speakers	39.0870	99.88307	23
	Non-native speakers	1.9130	5.81466	23
	Total	20.5000	72.43718	46
Total	Native speakers	27.6630	77.99807	92
	Non-native speakers	1.6087	4.82884	92
	Total	14.6359	56.63441	184

It also computed the commands of descriptive statistics for 10 EM. They included mean and standard deviation represented in Table 4.2.

Table 4.2

The Descriptive Statistics of Native Speakers and Non-Native Speakers' use of Engagement Markers Across Academic Divisions in the MICASE

Academic Divisions	Language status	Mean	Std. Deviation	N
Biological and Health Sciences	Native speakers	872.0000	2210.37634	10
	Non-native speakers	54.2000	104.25055	10
	Total	463.1000	1579.70133	20
Humanities and arts	Native speakers	1187.3000	3118.35156	10
	Non-native speakers	28.4000	53.52715	10
	Total	607.8500	2227.31938	20
Physical Sciences and Engineering	Native speakers	1061.5000	2740.14332	10
	Non-native speakers	122.7000	251.58743	10
	Total	592.1000	1954.10313	20
Social Sciences and Education	Native speakers	1144.2000	2925.21755	10
	Non-native speakers	97.7000	193.31957	10
	Total	620.9500	2087.86271	20
Total	Native speakers	1066.2500	2663.43386	40
	Non-native speakers	75.7500	166.68283	40
	Total	571.0000	1940.13788	80

According to Table 4.1 and Table 4.2 the native speakers' means of AMs and EMs were more than the non-natives in all of the four academic divisions. However, to indicate the degree of significance or non-significance of these differences between the two groups of speakers across these academic divisions,

this study used the inferential test UNIANOVA of which the results were indicated in Table 4.3 and Table 4.4.

Table 4.3

The UNIANOVA of Native Speakers and Non-Native Speakers' use of Attitude Markers Across Academic Divisions in the MICASE

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Powerb
Corrected Model	37473.125a	7	5353.304	1.715	.108	.064	12.002	.690
Intercept	39414.397	1	39414.397	12.624	.000	.067	12.624	.942
Academic Divisions	3226.364	3	1075.455	.344	.793	.006	1.033	.116
Language status	31226.136	1	31226.136	10.002	.002**	.054	10.002	.882
Academic Divisions *	3020.625	3	1006.875	.322	.809	.005	.967	.112
Languagestatus1								
Error	549491.478	176	3122.111					
Total	626379.000	184						

a. R Squared = .068 (Adjusted R Squared = -.027)

b. Computed using alpha = 0.05

**p≤0.05

According to Table 4.3 and Table 4.4., the difference in the frequency of AMs and EMs in academic divisions by two groups (native speakers and non-native speakers) was significant ($p=0.002$ and $F=10.002$) and ($p=0.027$ and $F=5.098$) respectively. The value of eta squared was equal to 0.054 for attitude and 0.066 for EM; therefore, almost 4.5% and 6.6% of the changes in frequency of AMs and EMs were accounted for by the independent variables (native speakers and non-native speakers).

In other words, it can be said that there was a significant difference between the two groups of native speakers and non-native speakers in making use of AMs and EMs across all academic divisions. That is, the native speakers significantly employed more AMs and EMs than non-native ones in Biological and Health Sciences, Humanities and Arts, Physical Sciences and Engineering, and Social Sciences and Education in the MICASE.

Table 4.4

The UNLANOVA of Native Speakers and Non-Native Speakers' use of Engagement Markers Across Academic Divisions in the MICASE

Source	Type III Sum of					Partial Eta Squared	Noncent. Parameter	Observed Power ^b
	Squares	df	Mean Square	F	Sig.			
Corrected Model	20260579.600 ^a	7	2894368.514	.752	.629	.068	5.264	.301
Intercept	26083280.000	1	26083280.000	6.777	.011	.086	6.777	.729
Academic Divisions	318810.900	3	106270.300	.028	.994	.001	.083	.055
Language status	19621805.000	1	19621805.000	5.098	.027**	.066	5.098	.606
Academic Divisions *	319963.700	3	106654.567	.028	.994	.001	.083	.055
Language status								
Error	277106086.400	72	3848695.644					
Total	323449946.000	80						

a. R Squared = .068 (Adjusted R Squared = -.022)

b. Computed using alpha = .05

**p≤0.05

4.2. Do the native and non-native speakers of English differ from each other in attitude and engagement markers' use across levels of interactivity in academic spoken English? if yes, how?

To investigate the differences between native and non-native speakers' use of AMs and EMs across four levels of interactivity in academic spoken English, this study computed the commands of descriptive statistics for 23 AM. They included mean and standard deviation represented in Table 4.5.

Table 4.5

The Descriptive Statistics of Native Speakers and Non-Native Speakers' use of Attitude Markers Across Level of Interactivity in the MICASE

Level of interactivity	Language status	Mean	Std. Deviation	N
Highly interactive	Native speakers	38.2609	110.63339	23
	Non-native speakers	.6087	1.61637	23
	Total	19.4348	79.67089	46
Highly monologic	Native speakers	11.1739	23.53653	23
	Non-native speakers	.0000	.00000	23
	Total	5.5870	17.39933	46
Mostly monologic	Native speakers	28.5217	80.59995	23
	Non-native speakers	2.0000	5.68091	23
	Total	15.2609	58.06488	46
Mostly interactive	Native speakers	26.4783	70.37489	23
	Non-native speakers	2.1304	6.19607	23
	Total	14.3043	50.90727	46
Mixed	Native speakers	17.3043	46.08237	23
	Non-native speakers	1.7391	5.52035	23
	Total	9.5217	33.39177	46
Total	Native speakers	24.3478	71.94955	115
	Non-native speakers	1.2957	4.55372	115
	Total	12.8217	52.16148	230

It also computed the commands of descriptive statistics for 10 EM. They included mean and standard deviation represented in Table 4.6.

Table 4.6

The Descriptive Statistics of Native Speakers and Non-Native Speakers' use of Engagement Markers Across Level of Interactivity in the MICASE

Level of interactivity	Language status	Mean	Std. Deviation	N
Highly interactive	Native speakers	1932.7000	5106.74400	10
	Non-native speakers	53.0000	107.68266	10
	Total	992.8500	3645.33031	20
Highly monologic	Native speakers	306.2000	749.33493	10
	Non-native speakers	.0000	.00000	10
	Total	153.1000	539.11808	20
Mostly monologic	Native speakers	1037.7000	2692.13253	10
	Non-native speakers	70.0000	140.00159	10
	Total	553.8500	1920.61967	20
Mostly interactive	Native speakers	852.0000	2149.29916	10
	Non-native speakers	95.1000	199.99747	10
	Total	473.5500	1535.54141	20
Mixed	Native speakers	659.3000	1665.14204	10
	Non-native speakers	97.7000	180.21965	10
	Total	378.5000	1188.17788	20
Total	Native speakers	957.5800	2807.92544	50
	Non-native speakers	63.1600	142.61341	50
	Total	510.3700	2028.41952	100

According to Table 4.5 and Table 4.6, the native speakers' mean of AMs and EMs was more than those of the non-natives across all of the levels of interactivity. However, to indicate the degree of significance or non-significance of these differences between the two groups of speakers across these levels of interactivity, this study used the inferential test UNIANOVA of which the results were indicated in Table 4.7 and Table 4.8.

Table 4.7

The UNANOVA of Native Speakers and Non-Native Speakers' use of Attitude Markers Across Levels of Interactivity in the MICASE

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	40727.083 ^a	9	4525.231	1.710	.088	.065	15.386	.773
Intercept	37811.309	1	37811.309	14.285	.000	.061	14.285	.964
Level of interactivity	5295.148	4	1323.787	.500	.736	.009	2.000	.169
Language status	30555.657	1	30555.657	11.543	.001**	.050	11.543	.923
Level of interactivity *	4876.278	4	1219.070	.461	.765	.008	1.842	.158
Error	582340.609	220	2647.003					
Total	660879.000	230						
Corrected Total	623067.691	229						

a. R Squared = .065 (Adjusted R Squared = .027)

b. Computed using alpha = 0.05

**p≤0.01

Based on the results indicated in Table 4.7 and Table 4.8, the differences between levels of interactivity by two groups (native speakers and non-native speakers) were significant ($p = 0.001$ and $F = 11.543$) and ($p = 0.030$ and $F = 4.833$) for both AMs and EMs respectively. The squared value of eta was equal to 0.050 for the former and 0.051 for the latter; therefore, almost 5% and 1.5% of the changes in the frequencies of AMs and EMs were accounted for by the independent variables (native speakers and non-native speakers).

Table 4.8

The UNANOVA of Native Speakers and Non-Native Speakers' use of Engagement Markers Across Levels of Interactivity in the MICASE

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	34880124.410 ^a	9	3875569.379	.936	.498	.086	8.428	.437
Intercept	26047753.690	1	26047753.690	6.294	.014	.065	6.294	.699
Level of interactivity	7621294.460	4	1905323.615	.460	.765	.020	1.842	.154
Language status	19999678.410	1	19999678.410	4.833	.030**	.051	4.833	.585
Level of interactivity *	7259151.540	4	1814787.885	.439	.780	.019	1.754	.148
Language status								
Error	372453962.900	90	4138377.366					
Total	433381841.000	100						
Corrected Total	407334087.310	99						

a. R Squared = .086 (Adjusted R Squared = -.006)

b. Computed using alpha = .05

**p≤0.05

In

other words, it can be said that there was a significant difference between native speakers and non-native speakers across all of the levels of interactivity (highly interactive, highly monologist, mostly

monologic, mostly interactive, and mixed). That is, the native speakers used more AMs and EMs than non-native speakers in highly interactive, highly monologic, mostly monologic, mostly interactive, and mixed academic spoken English in the MICASE.

4.3. Do the native and non-native speakers of English differ from each other in attitude and engagement markers' use across genders in academic spoken English? if yes, how?

To investigate the differences between native and non-native speakers' use of AMs and EMs across two genders in academic spoken English, this study first computed frequency, mean, and standard deviation represented in Table 4.9.

Table 4.9

The Descriptive Statistics of Native Speakers and Non-Native Speakers' use of Attitude Markers Across Genders in the MICASE

Gender	Language status	Mean	Std. Deviation	N
Female	Native speakers	72.6087	198.88959	23
	Non-native speakers	4.0000	10.95445	23
	Total	38.3043	143.52915	46
Male	Native speakers	49.0870	128.31138	23
	Non-native speakers	2.4783	7.26054	23
	Total	25.7826	92.89729	46
Total	Native speakers	60.8478	165.91979	46
	Non-native speakers	3.2391	9.22119	46
	Total	32.0435	120.39221	92

It also computed the commands of descriptive statistics for 10 EM. They included mean and standard deviation represented in Table 4.10.

Table 4.10

The Descriptive Statistics of Native Speakers and Non-Native Speakers' use of Engagement Markers Across Genders in the MICASE

Gender	Language status	Mean	Std. Deviation	N
Female	Native speakers	2717.8000	6996.23043	10
	Non-native speakers	163.9000	317.16398	10
	Total	1440.8500	4994.95811	20
Male	Native speakers	2068.3000	5360.61160	10
	Non-native speakers	151.9000	309.68854	10
	Total	1110.1000	3824.10304	20
Total	Native speakers	2393.0500	6075.22936	20
	Non-native speakers	157.9000	305.15051	20
	Total	1275.4750	4394.01691	40

According to Table 4.9 and 4.10, the native speakers' mean of AMs and EMs was more than the non-natives across the two genders. However, to indicate the degree of significance or non-significance of these differences between the two groups of speakers across these genders, this study used the inferential test UNIANOVA of which the results were indicated in Table 4.11 and Table 4.12.

Table 4.11

The UNIANOVA of Native Speakers and Non-Native Speakers' use of Attitude Markers Across Genders in the MICASE

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	82720.783 ^a	3	27573.594	1.963	.125	.063	5.888	.490
Intercept	94464.174	1	94464.174	6.724	.011	.071	6.724	.727
Gender	3606.261	1	3606.261	.257	.614	.003	.257	.079
Language status	76331.522	1	76331.522	5.433	.022**	.058	5.433	.635
Gender *	2783.000	1	2783.000	.198	.657	.002	.198	.072
Language status								
Error	1236259.043	88	14048.398					
Total	1413444.000	92						
Corrected Total	1318979.826	91						

a. R Squared = .063 (Adjusted R Squared = .031)

b. Computed using alpha = 0.05

**p≤0.05

According to Table 4.11 and Table 4.12, the difference in the frequency of AMs and EMs across genders by two groups (native speakers and non-native speakers) was significant ($p=0.022$ and $F=5.433$) and ($p=0.048$ and $F=3.566$) respectively. The values of eta squared were equal to 0.058 and 0.067 for attitude and EM; therefore, almost 5.8% and 6.7% of the changes in scores were accounted for by the independent variables (native speakers and non-native speakers) for AMs and EMs respectively.

In other words, it can be said that there was a significant difference between the two groups of native

speakers and non-native speakers in making use of AMs and EMs across two groups of genders. That is, the female native speakers significantly employed more AMs and EMs than female non-native speakers, and male native speakers significantly employed more AMs and EMs than male non-native speakers.

Table 4.12

The UNLANOVA of Native Speakers and Non-Native Speakers' use of Engagement Markers Across Genders in the MICASE

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	52068926.475 ^a	3	17356308.825	.891	.455	.069	2.674	.225
Intercept	65073459.025	1	65073459.025	3.342	.076	.085	3.342	.428
Gender	1093955.625	1	1093955.625	.056	.814	.002	.056	.056
Language status	49958955.225	1	49958955.225	3.566	.048**	.067	3.566	.505
Gender *	1016015.625	1	1016015.625	.052	.821	.001	.052	.056
Language status								
Error	700919071.500	36	19469974.208					
Total	818061457.000	40						
Corrected Total	752987997.975	39						

a. R Squared = .069 (Adjusted R Squared = -.008)

b. Computed using alpha = 0.05

**p≤0.05

4.4. Do the native and non-native speakers of English differ from each other in attitude and engagement markers' use across academic roles in academic spoken English? if yes, how?

To investigate the differences between native and non-native speakers' use of AMs and EMs across four academic roles in academic spoken English, this study first computed frequency, mean, and standard deviation represented in Table 4.13.

Table 4.13

The Descriptive Statistics of Native Speakers and Non-Native Speakers' use of Attitude Markers Across Academic Roles in the MICASE

Academic Role	Language status	Mean	Std. Deviation	N
Faculty	Native speakers	62.0435	158.40411	23
	Non-native speakers	3.4783	10.70204	23
	Total	32.7609	114.88974	46
Graduate	Native speakers	25.3478	66.33428	23
	Non-native speakers	2.3043	5.61196	23
	Total	13.8261	47.98255	46
Other	Native speakers	8.0000	24.27869	23
	Non-native speakers	.2609	1.05388	23
	Total	4.1304	17.43637	46
Undergraduate	Native speakers	26.3478	82.77604	23
	Non-native speakers	.3913	1.30520	23
	Total	13.3696	59.35331	46
Total	Native speakers	30.4348	96.53734	92
	Non-native speakers	1.6087	6.15006	92
	Total	16.0217	69.72765	184

It also computed the commands of descriptive statistics for 10 EM. They included mean and standard deviation represented in Table 4.14.

Table 4.14

The Descriptive Statistics of Native Speakers and Non-Native Speakers' use of Engagement Markers Across Academic Roles in the MICASE

Academic Role	Language status	Mean	Std. Deviation	N
Faculty	Native speakers	2388.8000	6117.91329	10
	Non-native speakers	170.7000	346.27993	10
	Total	1279.7500	4368.17916	20
Graduate	Native speakers	925.3000	2413.25566	10
	Non-native speakers	118.5000	230.47740	10
	Total	521.9000	1719.04098	20
Other	Native speakers	475.1000	1286.90882	10
	Non-native speakers	13.2000	25.81042	10
	Total	244.1500	917.03075	20
Undergraduate	Native speakers	998.7000	2544.72435	10
	Non-native speakers	13.4000	24.81129	10
	Total	506.0500	1822.95623	20
Total	Native speakers	1196.9750	3519.20193	40
	Non-native speakers	78.9500	212.12139	40
	Total	637.9625	2540.21062	80

According to Table 4.13 and 4.14, the native speakers' mean of AMs and EMs was more than that of the non-natives in all four academic roles. However, to indicate the degree of significance or non-significance of these differences between the two groups of speakers across these academic roles, this study used the inferential test UNIANOVA of which the results were indicated in Table 4.15 and 4.16.

Table 4.15

The UNIANOVA of Native Speakers and Non-Native Speakers' use of Attitude Markers Across Academic Roles in the MICASE

Source	Type III Sum of		Mean		F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
	Squares	df	Square						
Corrected Model	73926.000 ^a	7	10560.857	2.278	.030	.083	.15.949	.830	
Intercept	47232.087	1	47232.087	10.190	.002	.055	10.190	.888	
Academic Role	19939.000	3	6646.333	1.434	.235	.024	4.302	.376	
Language status	38223.391	1	38223.391	8.246	.005**	.045	8.246	.815	
Academic Role *	15763.609	3	5254.536	1.134	.337	.019	3.401	.302	
Language status									
Error	815809.913	176	4635.284						
Total	936968.000	184							
Corrected Total	889735.913	183							

a. R Squared = .083 (Adjusted R Squared = .047)

b. Computed using alpha = 0.05

**p≤0.05

According to Table 4.8, the difference in the frequency of AMs and EMs across four academic roles by two groups (native speakers and non-native speakers) was significant ($p=0.005$ and $F=8.246$) and ($p=0.041$ and $F=3.899$) for AMs and EMs respectively. The values of eta squared were equal to 0.045 and 0.069; therefore, almost 4.5% for attitude and 6.9% for EMs of the changes in scores were accounted for by the independent variables (native speakers and non-native speakers).

In other words, it can be said that there was a significant difference between two groups of native speakers and non-native speakers in making use of AMs and EMs across four academic roles. That is, faculty native speakers significantly employed more AMs and EMs than faculty non-native speakers. Graduate native speakers significantly employed more AMs and EMs than graduate non-native speakers. Undergraduate native speakers significantly employed more AMs and EMs than undergraduate non-native speakers. Native speakers of other academic roles made use of AMs and EMs more than non-native speakers of other academic roles in the MICASE.

Table 4.16

The UNLANOVA of Native Speakers and Non-Native Speakers' use of Engagement Markers Across Academic Roles in the MICASE

Source	Type III Sum of					Partial Eta Squared	Noncent. Parameter	Observed Power ^b
	Squares	df	Mean Square	F	Sig.			
Corrected Model	45732325.587 ^a	7	6533189.370	1.014	.429	.090	7.096	.407
Intercept	32559692.113	1	32559692.113	5.052	.028	.066	5.052	.602
Academic Role	11957017.838	3	3985672.613	.618	.605	.025	1.855	.173
Language status	24999598.013	1	24999598.013	3.899	.041**	.069	3.899	.513
Academic Role * Language status	8775709.738	3	2925236.579	.454	.715	.019	1.362	.137
Error	464028603.300	72	6444841.713					
Total	542320621.000	80						
Corrected Total	509760928.887	79						

a. R. Squared = .125 (Adjusted R Squared = .035)

b. Computed using alpha = .05

**p≤ 0.05

Conclusion

This research aimed to compare how native English speakers and non-native speakers utilize AMs and EMs in academic spoken English. The study analyzed the MICASE corpus to determine whether these language users differed in their use of interactional metadiscourse elements across academic divisions, levels of interactivity, genders, and academic roles.

The results supported the idea that native speakers' epistemology and research practices within the discourse community influenced the frequency patterns of AMs and EMs in their speech. Despite

being non-native speakers, they were aware of the need to adhere to disciplinary speaking standards. Additionally, native speakers showed higher sensitivity to levels of interactivity and used more attitude and EM, indicating a greater awareness of their audience and the purposes of the interaction.

A notable finding was the gender-specific use of these markers, with female and male academics employing different strategies to varying extents, resulting in distinct interactive effects. Moreover, faculty native speakers used AMs and EMs more frequently to construct persuasive arguments during interactions compared to individuals in other academic roles.

The study concluded that speakers with different mother tongues, genders, and academic roles used various attitudinal and engagement strategies in English as a lingua franca. While disciplinary community and cultural background played a role in shaping speaker positioning, other factors such as personality differences, stylistic preferences, previous education, and supervisors' feedback also influenced the speakers' use of attitude and EM. Additionally, the research supported the notion that the use of these markers is a form of social commitment, linked to the norms and expectations of specific cultural and professional communities, and influenced by particular settings and contexts.

References

Abdollahzadeh, E. (2011). Poring over the findings: Interpersonal authorial engagement in applied linguistics papers. *Journal of Pragmatics*, 43(1), 288–297. <https://doi.org/10.1016/j.pragma.2010.07.019>

Biber, D. (2006). University language: A corpus-based study of spoken and written registers. John Benjamins.

Crismore, A. (1989). Talking with readers: Metadiscourse as rhetorical act. Peter Lang.

Dafouz-Milne, E. (2008). The pragmatic role of textual and interpersonal metadiscourse markers in the construction and attainment of persuasion: A cross-linguistic study of newspaper discourse. *Journal of Pragmatics*, 40(1), 95–113. <https://doi.org/10.1016/j.pragma.2007.10.003>

Dueñas, P. M. (2010). Attitude markers in Spanish and English academic book reviews. *Ibérica*, 19, 117–144.

Harris, Z. S. (1959). The transformational model of language structure. *Anthropological Linguistics*, 1(1), 27–29.

Hunston, S., & Thompson, G. (2000). Evaluation in text: Authorial stance and the construction of discourse. Oxford University Press.

Hyland, K. (1998). Persuasion and context: The pragmatics of academic metadiscourse. *Journal of Pragmatics*, 30(4), 437–455. [https://doi.org/10.1016/S0378-2166\(98\)00009-5](https://doi.org/10.1016/S0378-2166(98)00009-5)

Hyland, K. (2000). *Disciplinary discourses: Social interactions in academic writing*. Pearson Education.

Hyland, K. (2004). Disciplinary interactions: Metadiscourse in L2 postgraduate writing. *Journal of Second Language Writing*, 13(2), 133–151. <https://doi.org/10.1016/j.jslw.2004.02.001>

Hyland, K. (2005a). *Metadiscourse: Exploring interaction in writing*. Continuum.

Hyland, K. (2005b). Stance and engagement: A model of interaction in academic discourse. *Discourse Studies*, 7(2), 173–192. <https://doi.org/10.1177/1461445605050365>

Koutsantoni, D. (2004). Attitude, certainty and allusions to common knowledge in scientific research articles. *Journal of English for Academic Purposes*, 3(2), 163–182. <https://doi.org/10.1016/j.jeap.2003.08.001>

Malinowski, B. (1927). The problem of meaning in primitive languages. In C. K. Ogden & I. A. Richards (Eds.), *The meaning of meaning* (pp. 296–336). Routledge.

Simpson, R. C., Briggs, S. L., Ovens, J., & Swales, J. M. (2002). The Michigan Corpus of Academic Spoken English. *TESOL Quarterly*, 36(3), 431–441. <https://doi.org/10.2307/3588425>

Swales, J. M. (1990). *Genre analysis: English in academic and research settings*. Cambridge University Press.

Vande Kopple, W. J. (1985). Some exploratory discourse on metadiscourse. *College Composition and Communication*, 36(1), 82–93. <https://doi.org/10.2307/357609>

Author Information

Arkan Rahman Sayah (Ministry of Education, Al-Qadisiyah Education , Diwaniyah , Iraq)
Arkanalnayly34@gmail.com
